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in the Electricity Sector
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Abstract—The big data era has raised public concern regarding
private information leakage. Therefore, in the electricity sector,
many classical privacy preserving mechanisms based on noise
injection have been designed and implemented for meter data.
However, injected noise of large magnitudes can affect the
statistical structure of these data. Therefore, in this study, we
identify the inherent randomness embedded in time series data
to mitigate this issue. To this end, we study the potential of using
this inherent randomness to protect the privacy for both high and
low resolution time series data. We propose a privacy preserving
mechanism using stochastic differential equation modeling. We
theoretically prove the effectiveness of our proposed framework
and design several methods to implement our mechanism to
aid various data-driven consumer behavior analysis tasks in
the electricity sector. The numerical results indicate that our
framework can simultaneously maintain the desired level of
privacy preservation and value of data in practice.

Index Terms—Privacy Preserving, Stochastic Differential
Equation, Consumer Behavior Analysis

NOMENCLATURE

DP differential privacy
MLP multilayer perceptron
NILM non-intrusive load monitoring
ODE ordinary differential equation
pdf probability density function
RDP Rényi differential privacy
SDE stochastic differential equation
F (·) bounded function to characterize V
g(·) ODE’s governor
R(·) Rényi divergence
V (·) SDE potential function
α order of Rényi divergence
β SDE coefficient
∆ sensitivity
δ step size for SDE discretization
λ∗ strongly convex parameter of V
λ0 inverse variance of x0
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ϕ sensitivity assignment between time 0 and time t
θ parameters for parametric potential function
C bounded parameter for F (xt)
D hidden states
nt time independent noise of time series data
rt noise injected in high resolution data mechanism’s

implementation
Sg(t) time varying sensitivity budget
S#
g (t) discrete time varying sensitivity budget

tp shock interval length
xt time series data
yt time dependent part of time series data

I. INTRODUCTION

Data-driven approaches have dramatically changed our
lifestyles; for example, personalized recommendations for
online shopping, fraud detection in banking, and quantitative
trading for investment. In the electricity sector, data-driven
approaches have also enabled ambient assisted living [1], real
time energy saving [2], load profiling [3], etc. Although these
techniques have contributed to realizing a more efficient power
grid, they have also led to significant public concern regarding
private information leakage.

Thus far, several privacy protection mechanisms have been
proposed; however, most of them are based on noise injection.
Injected noise can clearly affect the statistical structure of time
series data, which can influence the performance of various
data-driven tasks that utilize these noisy data. However, the
conventional privacy preserving mechanisms seldom consider
these impacts. There are two major approaches to minimiz-
ing such impacts: inject as little noise as possible while
maintaining the target privacy preserving level, and identify
the physical meaning of injected noise in different tasks for
potential error correction.

In this study, we use consumer behavior analysis as an
example to design an effective privacy preserving mechanism
for time series data in the electricity sector. To this end, we
exploit the internal noise in the time series data to avoid
injecting excessive noise. Thus, we can realize remarkable
performances in various consumer behavior analysis tasks
compared to those realized using classical noise injection
mechanisms.

A. Related Works

We identified three major streams of close research: 1) using
time series data to perform consumer analysis in the electricity
sector, 2) designing various privacy preservation mechanisms
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for energy data, 3) modeling time series data using stochastic
differential equations (SDEs).

Time series data play an important role in consumer be-
havior analysis in the electricity sector. For example, high
resolution time series data allow detailed appliance-level load
profile analyses, termed non-intrusive load monitoring (NILM)
[4]. This technique can detect switch events or track the
states of appliances using high resolution meter readings.
This information is highly beneficial for consumer behavior
analysis. See [5] for a comprehensive survey. Further, low
resolution time series data is very useful for understanding
consumers’ lifestyles, which can help facilitate active demand
side management [6], [7]. See [8] for an excellent survey.

Next, we revisit the existing privacy mechanisms in the elec-
tricity sector. Specifically, we have now classified the privacy
mechanisms into two categories: cryptographic mechanisms
and statistical mechanisms [9]. Most cryptographic privacy
mechanisms utilize various encryption techniques. For exam-
ple, Garcia et al. use the homomorphic encryption method to
protect privacy in smart grids [10]. Zhang et al. propose a
multi-authority attribute-based data sharing framework for the
electricity sector, and the core technique is the inner product
encryption [11]. Mustafa et al. propose a multi-party compu-
tation based protocol to preserve privacy in smart meter data
collection [12]. Romdhane et al. propose an encryption method
for data aggregation to preserve privacy against attackers
in data communication [13]. Besides encryption, blockchain
techniques are also catching an increasing eye to conduct
private communications for the power grid [14], and federated
learning is enabling many smart meter data-driven applications
[15]. However, these cryptographic methods primarily address
privacy leakage issues in communication, and attackers are
frequently able to deduce the truth if they have access to all
keys or unlimited computational power. In our study, on the
other hand, we use the statistical notion of privacy, which looks
at privacy leakage from an information theory point of view.

The most representative statistical notion to characterize
privacy is differential privacy (DP). The research on designing
mechanisms to achieve DP in the smart grid is well researched,
with the majority of them attempting to manipulate the distri-
bution of the information (to be protected) through various
methods. And the noise injection methods (e.g., injecting
Gaussian or Laplacian noises [16], [17]) are among the most
classical ones. Most existing works focus on investigating how
to inject as little noise as possible to achieve a given privacy
preserving level. Such attempts include noise amplitude adjust-
ment [17], customizing different types of noise for different
applications [18], [19], maintaining the smoothness of the
perturbed data [20], and manipulating the Fourier transform
coefficients [21]. Besides sanitizing the data, researchers also
seek to map the data to other spaces and sanitize the mapping
or algorithms to generate protected information iteratively. For
example, Syed et al. adopt Differentially Private Stochastic
Gradient Descent (DPSGD) to preserve the privacy of the
data-driven model in the electricity sector [22]. Papernot et
al. discuss the potential of applying the Private Aggregation
of Teacher Ensembles (PATE) framework to protect the smart
meter data [23]. In the same vein, many recent works design

privacy mechanisms for clustering and other optimization
tasks [24], [25], [26], [27]. These mechanisms often construct
theoretical guarantees based on the composition theorem and
achieve good performance in privacy preservation. However,
the statistics of original data may be significantly changed
after perturbation due to the mapping to another space. Other
mechanisms [28], [29] utilize mutual information to achieve
privacy preservation. Pal et al. seek to minimize the mutual
information loss between the initial information and the infor-
mation after privacy preservation when designing the privacy
mechanism [30]. These methods often need to deal with multi-
level stochastic optimizations, which are often computationally
expensive to derive optimal solutions.

Clearly, noise injection methods enjoy the following two
advantages: It’s convenient to derive theoretically guaranteed
privacy for noise injection methods, and such methods are
often able to keep the statistics of the original data to support
various data analyses and data-driven control applications.
Therefore, we follow this research line and propose utilizing
SDE modeling to achieve minimal noise injection. By doing
so, our proposed mechanism can maintain many data statistics
and a solid theoretical guarantee. These two characteristics are
also highly desirable for the application of our interest, the
problem of consumer load data protection. To enable the sub-
sequent consumer behavior analysis, the data quality should be
maintained. And the outputs of the proposed mechanism are
perturbed consumers’ load data. Thus, our proposed scheme
can be more widely adopted in many scenarios.

Another line of closely related literature has investigated
time series data modeling using SDE. To this end, many efforts
have been devoted to deriving a suitable SDE for approxi-
mately modeling time series data [31], e.g., approaches based
on the Einstein-Smoluchowski theory [32], and generalized
stochastic Smoluchowski equation [33]. Verdejo et al. use SDE
to model wind power generation and demand for prediction
[34]. Sossan et al. formulate an SDE for demand side man-
agement [35]. Weron et al. conduct spot price predictions for
the electricity market based on SDE models in [36]. However,
these and other such studies focus on specific tasks based on
SDE models, and they seldom discuss the physical meaning
of the estimated SDE and its relationship with privacy, which
forms the core of our work. This study follows our previous
works [3], [37], wherein we studied the physical meaning of
privacy mechanisms in clustering and NILM. We constructed
criteria to evaluate the performance of the proposed privacy
mechanisms.

B. Our Contributions

To the best of our knowledge, this is the first study that
exploits the internal characteristics of time series data to design
an effective privacy preserving mechanism for the electricity
sector. The internal characteristics are distinguished through
SDE modeling. Our principal contributions are summarized
below:

• Internal Privacy Characteristics Extraction: We model
both high resolution and low resolution data via SDE
to extract the intrinsic noise in the original process, and
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we use these models to analyze the privacy guarantee
intrinsically embedded in these two types of time series
data.

• Privacy Preserving Mechanism Design: We design a
privacy preserving mechanism to achieve a certain level
of privacy by utilizing the privacy characteristics of the
data. We theoretically prove its privacy guarantee.

• Enabling Pilot Implementations: Our proposed privacy
preserving mechanism has the potential to enable pilot
practical implementations, such as NILM and load profil-
ing1. In the numerical studies, our proposed mechanisms
simultaneously protect data privacy and maintain the
value of data in terms of inferring various consumer
behaviors. In addition, our method can be implemented
in real time, highlighting additional benefits for practical
use. This is because to implement our method, the key
is to determine a convex potential function, which can
be learned from the historical data. And then, together
with the sample collected in real time, our method could
achieve the privacy preserving.

Our work is primarily motivated by the increasing need
for consumer behavior analysis in the electricity sector. Such
analysis could enable more customized pricing plans and more
active demand response, which are essential for the future
smart grid. However, directly publishing the raw data to the
data analyzers is not a choice, as they can easily identify
the consumers and reveal their privacy through the meter
data [38]. Hence, we adopt the notion of differential privacy,
which injects noise into the raw data to preserve privacy. We
imagine there are at least three early adopters of our proposed
mechanisms.

• The first adopters are the ISOs and utility companies.
They currently have full access to the consumers’ data
and are required by law to protect the data. When
recording the meter data collected from the consumers
for analysis, the ISOs and utility companies are obliged
to protect the consumers’ privacy. Hence, using our
mechanism, they could directly inject minimal noise into
the recorded meter data. Compared with other privacy-
preserving mechanisms, our mechanism better preserves
the data characteristics, enabling more data analysis.

• The next adopters are third-party privacy-preserving en-
tities. Such entities have already emerged in practice.
For example, Pecan Street is actively recruiting volun-
teers to provide their energy consumption data. And
in their agreement with the volunteers, they promise
that ”Data from an individual home can be viewed
by the homeowner/resident. Researchers that access our
database, however, cannot identify any individual par-
ticipant”. From an academic point of view, the most
straightforward approach to enforcing such a guarantee
is to employ the notion of differential privacy. And we
provide an efficient way to achieve a certain level of

1In our study, the potential mechanism can be regarded as a local differential
privacy preserving mechanism. However, our mechanism can also be extended
to multiple users.
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Fig. 1: The paradigm of our paper

privacy-preserving requirements while the data can also
be utilized for these entities’ purposes.

• Other adopters are the consumers themselves. When the
number of third parties increases, the consumers who
would like to sell their data may not have the capability
of knowing which agent they can trust. Hence, in this
case, before selling their data, they may want to adopt
our method to protect their own data with the help
of their local storage devices (e.g., the storage devices
in electric vehicles, PV panels, etc.). Compared with
existing methods, our proposed mechanism also enjoys
a lower expected cost for conducting the noise injection,
which benefits consumers.

The remainder of this paper is organized as follows: Section
II revisits the preliminary definitions for the SDE analysis and
privacy preserving mechanisms. Based on these definitions, we
design a privacy preserving mechanism for high resolution and
low resolution time series data, which are presented in Sections
III and IV respectively. Section V presents numerical studies
that highlight the effectiveness of the proposed mechanism.
Finally, concluding remarks are delivered in Section VI. All
the necessary proofs are postponed to the Appendix. Fig. 1
visualizes the structural paradigm of our proposed method-
ology with the notion in the preliminaries and the following
discussion.

II. THE PRELIMINARIES

In this study, we investigate how to extract randomness
embedded in time series data to help design a privacy preserv-
ing mechanism. Therefore, we briefly revisit useful definitions
to characterize randomness through SDE and then introduce
privacy notions that will be frequently used in the subsequent
analysis.

A. Stochastic Differential Equation

We adopt the notion of Smoluchowski dynamics for SDE
modeling and then introduce the Fokker-Planck equation to
characterize such dynamics.
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Definition 1. (Smoluchowski Dynamics [39]) A stochastic
process xt satisfies the Smoluchowski dynamics if the process
is governed by the SDE:

dxt = −∇V (xt)dt+
√

β−1dWt, (1)

where ∇, V (xt), Wt, and β represent the divergence oper-
ator, the potential function, a Wiener process (i.e., standard
Brownian motion), and a fixed coefficient, respectively.

Remark: In this process, the dynamics are governed by the
time invariant potential function V (xt) and independent noise.
Although simple, this process is powerful for characterizing
the high resolution time series data in the electricity sector.
These data often have a large volume, even within a relatively
short time period (e.g., 1-millisecond resolution data generated
in 5 minutes). Under such a short time period, any temporal
effects attributed to the physical laws can be neglected. In our
work, this temporal effect refers to how the potential function
varies with time. Take the high-resolution data setting as an
example. We assume in a short period the potential function
can be considered as a time-invariant function, denoted by
V (xt). In our study, the 5-minute period is selected for NILM
only. When conducting NILM, we often assume that con-
sumers won’t switch appliances frequently. This is particularly
true for a short period of time, e.g., a 5-minute duration. This
can also be verified by various datasets, e.g., REDD dataset
[40] and UK-DALE dataset [41]. Therefore, we can safely
assume that the potential function is time invariant, and the
noises are independent for high resolution data. We relax these
assumptions when considering low resolution data by utilizing
a time varying potential function V (xt, t).

Definition 2. (Fokker-Planck Equation [39]) If a stochastic
process xt can be described by the SDE:

dxt = µ(xt, t)dt+ σ(xt, t)dWt, (2)

where Wt represents a Wiener process, then the probability
density function (pdf) for xt denoted by p(x, t) satisfies the
Fokker-Planck equation:

∂p(x, t)

∂t
= −∇ · (µ(x, t)p(x, t)) + ∆H(σ(x, t)p(x, t)), (3)

where ∆H represents the Laplace operator.

Remark: The Fokker-Planck equation is a powerful tool
for analyzing the general SDE process. It converts the SDE
characterization to pdf characterization, which is easier to
study.

B. Privacy Preserving Mechanism

Next, we introduce a Gaussian mechanism based on the
notion of Rényi differential privacy (RDP). We first introduce
Rényi divergence, which is essential for defining the RDP.
Then, we introduce the connection between RDP and the
classical (ϵ, δ) differential privacy ((ϵ, δ) DP), which paves the
way for our subsequent privacy preserving mechanism design.

Definition 3. (Rényi Divergence [42]) For any order α > 0,
the Rényi divergence of order α of probability distribution P
from probability distribution Q is defined as:

Dα(P ||Q) =
1

α− 1
ln

∫
p(µ)αq(µ)1−αdµ, (4)

where p(·), q(·) are the pdfs of P,Q; and µ is a σ-finite
measure.

This allows us to introduce the notion of RDP.

Definition 4. (Rényi Differential Privacy, RDP [43]) Given
dataset D ∈ D , the neighborhood dataset D′ of D satisfies
d(D,D′) ≤ 1 for any distance metric d over D . A randomized
algorithm A : D → R satisfies (α, ϵ) RDP if for any D and
neighborhood dataset D′, Rα(A (D)||A (D′)) ≤ ϵ.

RDP describes the global privacy characteristics of D and
can be converted to (ϵ, δ) DP as follows:

Proposition 1. (Proposition 3 in [43]) If A is an (α, ϵ) RDP
mechanism, it satisfies (ϵ+ log1/δ

α−1 , δ) DP, ∀δ ∈ (0, 1).

Remark: Here, ϵ from traditional (ϵ, δ)-differential privacy is
different than the ϵ in (α, ϵ)-RDP. In the traditional (ϵ, δ)-
DP setting [44], we say a mechanism B achieves (ϵ, δ)-DP if
for all neighbor datasets D1 and D2, and for all measurable
subsets Y ⊂ R, the mapping B satisfies,

Pr(B(D1) ∈ Y )

Pr(B(D2) ∈ Y )
≤ eϵ + δ. (5)

In contrast, (α, ϵ)-RDP requires that for all neighbor datasets
D1 and D2, Rα(B(D)||B(D′)) ≤ ϵ with α Rényi Diver-
gence. In this work, we adopt the notion of RDP with better
analytical properties in terms of designing privacy preserving
mechanism.

The subsequent privacy analysis is conducted under the
RDP framework and we can use Proposition 1 to convert it to
the classical (ϵ, δ) DP metrics.

Definition 5. (Gaussian Mechanism for RDP [45]) Given
dataset D and its neighborhood dataset D′ with metric f ,
if a Gaussian mechanism M satisfies

M = f(D) + N (0, σ), (6)

where f represents a mapping f : D → R and N represents
a normal distribution, then the mechanism M satisfies (α, α

σ2 )
RDP.

Remark: We use the classical Gaussian mechanism for RDP
because parameters (ϵ, δ) in the classical DP are connected
through noise variance σ in the RDP framework. Therefore,
the physical meaning of the injected noise is clear. The noise
of a larger variance can realize higher privacy preservation
when designing a simple noise injection privacy preserving
mechanism. Moreover, implementing noise of larger variance
often yields a higher noise generation.2 Therefore, we plan

2Since the noises are often generated by charging and discharging the
storage devices, we can measure the noise generation costs in terms of the
degradation costs for storage devices. Precisely, generating noises of larger
variances (i.e., magnitudes) correspond to deeper charging cycles for storage,
yielding higher degradation costs.
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to exploit the inherent noise in the time series data such that
noise of smaller variance can be injected while achieving the
same privacy preserving level.

III. MECHANISM FOR HIGH RESOLUTION DATA

The critical property of high resolution time series data in
the electricity sector is sparsity in the occurrence of events
(or changes) attributed to the high inertia of the power sys-
tem. Thus, useful information embedded in the data can be
considered as random shocks.

A. Mechanism Design

Without loss of generality, given the time series data X =
(x0, .., xT ) the time length T , we assume that the shock
occurs at time 0. The measurement x0 satisfies N (x̃0,

1
λ0
),

where x̃0 represents the mean of shock x0 and λ−1
0 is its

variance, because it is a random shock. We want to make
x0 indistinguishable from x′

0 ∼ N (x̃′
0,

1
λ0
), where x′

0 has
mean x̃′

0 and the same variance as x0 to ensure the privacy
preservation.
Remark: Random shock refers to the unpredicted significant
change in the time series data. Mathematically, for time
t − 1 and t, we say a random shock occurs at time t if
|xt − xt−1| > h, where h is the threshold to differentiate the
significant change from common fluctuations. In the context
of NILM for our study, the key information is embedded in the
random shocks. And random shocks are also referred to as the
load shocks in the NILM literature [46], [47]. In our study, we
slightly changed the name from load shocks to random shocks
to highlight the uncertainty embedded in the load shocks.

We denote the initial Rényi divergence between x0 and x′
0

by Rα(x0, x
′
0), which equals α∆2λ0

2 , where ∆ = ∥x̃0 − x̃′
0∥

is defined as the sensitivity for noise perturbation. This value
measures the indistinguishability between the two inputs. A
higher sensitivity indicates that they can be identified more
easily.

Thus, different initial states x0 and x′
0 lead to two SDEs. We

model high resolution time series data using the Smoluchowski
dynamics as:

dxt = −∇V (xt)dt+
√

β−1dWt. (7)

Remark: We adopt the Smoluchowski dynamics because high
resolution data include little information other than random
shocks. The classical approach treats every sample point in X
as the same, i.e., every point can be a random shock. There-
fore, the classical approach injects noise into each sample
point. Indeed, such an approach injects too much noise into
X because the key information we want to protect is only
related to x0. To highlight these properties, we adopt simple
Smoluchowski dynamics.

Next, we assume that V (xt) satisfies

V (xt) =
λ0

β
x2
t + F (xt), (8)

where F (xt) represents a C-bounded 3 function.

3F (xt) is C-bounded if |F (xt)| ≤ C for all xt over its domain.

Fig. 2: High resolution sample data comparison

Fig. 3: Privacy guarantee comparison

This form embeds key insights of high resolution data. Fig.
2 illustrates the sample energy consumption trace correspond-
ing to the SDE with the initial state, x0 (blue line), and the
privacy preserved trace (orange line) corresponding to the SDE
with the initial state, x′

0. These two traces are from a single
house load at the resolution of 1 second. After the random
shock at time 0, the energy consumption roughly maintains
the same level with some noise. These are exactly the insights
described by the specific form of V (xt). The first term in
Eq. (8) seeks to maintain a constant energy consumption level
whereas the second term F (xt) describes the time independent
perturbations of the system. These perturbations can cause the
system to be indistinguishable from other systems, and hence,
it reflects the system privacy characteristics. This form is also
able to approximate all the functions with the bounded xt and
bounded changes over xt. This flexibility is another reason for
us to choose to specify the form of V (xt) as in Eq. (8) [48],
[49], [50]. For practical implementation, we adopt data-driven
methods to estimate V (xt).

Next, we prove the following theorem that characterizes
how the privacy level evolves with time and sensitivity:

Lemma 1. If process xt can be characterized by the SDE
process with V (xt) in the form of Eq. (8) with parameters C,
λ0 and sensitivity ∆, then xt satisfies (α, α∆2λ0

2 e−2
λ0
β te−4Cβ

)
RDP.

Remark: This lemma illustrates the temporal privacy preserv-
ing effect of the time series data. The privacy level increases
in the order of O(∆2e−t) in terms of time and sensitivity. Un-
fortunately, the exponential term e−4Cβ weakens the privacy
preservation. A higher C indicates a higher complexity for
exploiting the characteristics of the time series and making
the data more distinguishable from others, which leads to a
lower privacy level.

We can obtain a stronger privacy guarantee by utilizing the
strong convexity of V (xt) in Eq. (8).

Theorem 1. If process xt can be characterized using the SDE
process in Eq. (8) with sensitivity ∆, and V (xt) is λ∗-strongly
convex for βλ∗ ≥ λ0, then xt satisfies (α, α∆2λ0

2 e−2λ∗t) RDP.

Example: In correspondence to Fig. 2, Fig. 3 shows a com-
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parison between the magnitudes of privacy preservation for
the three processes: the original trace, privacy preserved trace
based on SDE modeling, and privacy preserved trace based
on the classical noise injection method. The privacy guarantee
refers to the parameter ϵ in (α, ϵ) RDP. We find that the
original process has some privacy guarantee because of the
embedded noise. Further, privacy preservation is improved
after we adjust the potential function. Fig. 3 also shows that
the privacy of our method (orange line) increases exponentially
with the time duration. Finally, Fig. 3 illustrates that the pro-
posed mechanism always achieves a higher privacy guarantee
in this example compared to those of the other methods, which
demonstrates the effectiveness of our proposed method with
high resolution data.

B. Learning Differentiable Potential Function

A strongly convex function V (xt) needs to be constructed
to maintain the strong privacy guarantee. However, the ground
truth potential function may not be convex. Hence, we need
to fit the original data with a parametric function Vθ, which
is strongly convex.

We use polynomial and sinusoidal functions to construct
one approximation of ∇2V (xt), denoted by H(xt), because
strong convexity is related to ∇2V (xt):

H(xt; θ, ζ) = ∇2V (xt; θ, ζ)

=
∑n

i=1
θix

i
t +
∑m

i=1
ζicos(ixt),

(9)

where n and m represent the number of the polynomial and
sinusoidal functions respectively; and θi and ζi represent the
coefficients to be estimated.

Remark: Our study focuses on the case when xt is a scalar.
In this case, for a twice continuously differentiable function
V : R → R, if V is λ∗-strongly convex, it satisfies that,

∇2V (x) ≥ λ∗. (10)

This conclusion can be extended to high-dimensional cases,
and the condition becomes that the minimum eigenvalue of
∇2V (x) should be no smaller than λ∗.

To ensure strong convexity, we require H(xt) ≥ λ∗, which
yields the following optimization problem for data fitting when
there are T data points:

min
θ,ζ

T∑
t=2

[
n∑

i=1

θixt

i+ 1
−

m∑
i=1

ζisin(ixt)

i
− xt + xt−1

]2
s.t.

∑n

i=1
θixt +

∑m

i=1
ζicos(ixt) ≥ λ∗.

(11)

Further, we can construct a neural network (NN) to learn
this parametric function. The general idea is to fix the output
of the final layer to a value larger than λ∗ to achieve the
strong convexity. With the learned Hθ(xt) and the boundary
conditions, we can construct the first order derivation ∇Vθ(xt).
We illustrate this procedure in Algorithm 1.
Remark: If prior knowledge allows us to model the data
with some given F (xt), then Algorithm 1 helps provide
a convex approximation for the given F (xt). Clearly, such
prior knowledge helps us to derive a more accurate convex

Algorithm 1: NN Construction of ∇Vθ(xt)

Input: The time series data xt t = 1, ..., T ;
The privacy requirement ϵ;
The initial neural network Hθ(xt);
The Riemann summation piece number k;
The epoch number E;
The learning rate η;

Output: ∇Vθ(xt);
1: Derive the required convexity λ∗ using Theorem 2
2: for i ≤ E do
3: L = 0
4: for s ∈ {1, .., T} do
5: Divide [0, xt] into k piece
6: Calculate ∇Vθ =

∑k
j=1 max(Hθ(

jxt

k ), λ∗)
7: L = L + (∇Vθ − (xt − xt−1))

2

8: end for
9: θ = θ − η∇θL

10: end for

approximation, yielding better performance for the subsequent
data-driven tasks.

If Hθ(xt) is L-Lipschitz, then the approximation error can
be bounded as follows:

Corollary 1. If the function Hθ(xt) is L-Lipschitz, the error
of the Riemann summation approximation with k pieces is of
the order of O(

Lx2
t

k ).

Remark: Fazlyab et al. proposed a convex programming
framework for deriving tight bounds on the global Lipschitz
constant [51]. We want to emphasize that, in the SDE dynam-
ics, we require only the knowledge of ∇Vθ(xt), instead of
Vθ(xt). Hence, we do not need to integrate ∇Vθ(xt) to derive
Vθ(xt), which incurs an additional approximation error.

After constructing a strongly convex function, our mecha-
nism can be implemented in two ways. We can directly use the
sequence sampled from the SDE induced by the constructed
strongly convex V . We denote it as x∗

t . The second approach
is to combine the constructed sequence x∗

t with xt. We inject
noise x∗

t −x0 into the original time series xt, which results in
the process xt + x∗

t − x0. In this study, we choose the latter,
and it achieves more privacy preservation. This observation
can be formally stated as follows:

Proposition 2. Process xt + x∗
t − x0 achieves more privacy

preservation than process x∗
t .

IV. MECHANISM FOR LOW RESOLUTION DATA

When dealing with high-resolution data, only the shock
events expose private information, i.e., when the consumer
switches on/off some specific appliance. Hence, in this case,
the consumer behaviors refer to the shock events. i.e., the
appliances’ switch events. In contrast, the consumer behaviors
embedded in the low-resolution data are more complicated.
They include consumers’ energy consumption habits and
lifestyles, and we want to protect these critical determinants
of consumer behaviors. As these determinants contain much
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richer information than the information embedded in the
appliance switch events in the high-resolution data case, it
is more challenging to preserve the privacy of low-resolution
data.

A. Mechanism Design

We utilize a time dependent potential function V (xt, t) to
handle low resolution data SDE modeling. That is, we assume
xt satisfies:

dxt = −∇V (xt, t)dt+
√
β−1dWt. (12)

We decouple V (xt, t) into two parts: a time dependent
function g and a time independent function Vn. These two
functions induce two processes yt and nt respectively. Hence,
xt = yt+nt. The time dependent process yt is determined by
the internal pattern of the time series data, such as the lifestyles
of households. Thus, we assume yt is governed by function
g, which is dependent on time t and some hidden states D,
i.e., g(D, t). Under this assumption, yt can be described by
the ordinary differential equation (ODE):

dxt = −g(D, t)dt. (13)

Remark: We implicitly assume that process yt is not influ-
enced by the exact value of xt, because yt reflects the internal
characteristics of the time series data.

The other time independent process nt can be modeled
based on the Smoluchowski dynamics as follows:

dnt = −∇Vn(xt)dt+
√
β−1dWt. (14)

Here, we again assume that

Vn(xt) =
λ0

β
x2
t + F (xt), (15)

with C-bounded F (xt).
To ensure privacy preservation, we need to define the

sensitivity between the dynamics governed by the neighbor
states. For any neighbor state of D, denoted by D′, and all t,
we assume

|g(D, t)− g(D′, t)| ≤ ϕSg(t), (16)

where Sg represents the time varying sensitivity budget. This
value represents the assignment of the sensitivity to each time
t. To quantify the total budget of sensitivity, we require that
∥Sg(t)∥2 ≤ ϕ∆ (i.e.,

∫ +∞
0

Sg(t)dt ≤ ϕ∆), where ∆ is
the total budget for sensitivity and ϕ ∈ [0, 1] represents the
assignment of sensitivity between time 0 and time t.
Remark: The high resolution cases correspond to the case
where ϕ = 0 and Sg(t) = 0, for t > 0 because all the
information is revealed at the initial time.

The total budget ∆ and the assignment constant ϕ are
related to the initial states. Note that x0 = y0 + n0. For
different states D,D′, x0 ∼ N (x̃0,

1
λ0
), x′

0 ∼ N (x̃′
0,

1
λ0
),

and parameters ∆ and ϕ require that |x̃0 − x̃′
0| ≤ (1− ϕ)∆.

This allows us to derive the privacy guarantee for the
process xt as follows.

Fig. 4: Low resolution sample data comparison

Fig. 5: Privacy guarantee comparison

Lemma 2. For SDE process xt specified by Eq. (12), given
two states D,D′, total budget ∆, assignment ϕ and sen-
sitivity budget Sg(t) with ∥Sg(t)∥2 ≤ ϕ∆, xt satisfies
(α, α(1−ϕ)2δ2λ0

2 ηI + αϕ2δ2β2

2λ0e−4Cβ (1 − ηP )) RDP, where ηI and
ηP reflect the initial and pattern information exposure respec-
tively, with the following closed form characterizations:

ηI = e−2
λ0
β te−4Cβ

,

ηP = e−
λ0
β (t−1)e−4Cβ − e

λ0
β (1−2t)e−4Cβ

+ e−2
λ0
β te−4Cβ

.

Remark: Note that the initial information preservation decays
at the rate of order O(∆2e−t) and the pattern information
preservation decays at the rate of order O(∆2(1 − e−t)).
This implies that the initial information can be protected
more easily because of the noise process whereas the pattern
information can only be protected by utilizing the sensitivity
budget. These findings are consistent with our intuition.

If we utilize the strong convexity of Vn(xt), we can further
obtain stronger privacy preservation as follows:

Theorem 2. For the SDE process xt specified by Eq. (12) with
λ∗-strongly convex Vn(xt), that is, βλ∗ ≤ λ0 as in Eq. (15),
given two internal states D,D′, total budget ∆, assignment
ϕ and sensitivity budget Sg(t) with ∥Sg(t)∥2 ≤ ϕ∆, xt

satisfies (α, α(1−ϕ)2δ2λ0

2 η∗I +
αβϕ2δ2

λ∗ (1− η∗P )) RDP, where η∗I
and η∗P reflect the initial and pattern information exposure
respectively, with the following closed form characterizations:

η∗I = e−λ∗t,

η∗P = e−
λ∗(t−1)

2 − e
λ∗(1−2t)

2 + e−λ∗t.

Example: We use load profiling to explain our mechanism
for low resolution data. Fig. 4 shows the sample load pro-
files before and after privacy preservation. However, the two
profiles look considerably similar. Fig. 5 shows that both
profiles share different privacy preserving levels. Owing to
the inherent noise, the original profile enjoys some privacy
(blue line in Fig. 5), whereas with slight noise, our mechanism
achieves a higher privacy preserving level (orange line in Fig.
5). However, the privacy preserving level decreases over time.
The comparison of these results with those of the classical
Gaussian mechanism (yellow line in Fig. 5) with injected noise
of the same magnitude indicates that our mechanism always
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preserves more privacy. This demonstrates the effectiveness of
our mechanism for low resolution data.

B. Mechanism Implementation
We consider a simplified setting wherein the time series

data directly represent state D (e.g., the load profile of each
household). We aim to protect D, where D ∈ RT and T < ∞.
To implement our mechanism, we need to construct g(D, t).

Here, the key difficulty is that g(D, t) is a continuous
function and D is a discrete dataset. One approach is to require
g(D, t) = yt+1 − yt, for discrete t = 1, ..., T − 1, and then
conduct interpolation with T anchors as g(D, t).

For the neighboring datasets D and D′, we need to guar-
antee |g(D, t)− g(D′, t)| ≤ Sg(t). Hence, the next task is to
construct a continuous Sg(t). We define

S#
g (t) := |yt+1 − yt − y′t+1 + y′t|, (17)

and we require Sg(t) = S#
g (t), for discrete t = 1, ..., T . We

can follow the same routine as that for constructing g(D, t).
The key difference is that when constructing Sg(t), we must
further guarantee the first and second order smoothness. In
addition, we need to guarantee sensitivity consistency by
requiring

∫ t+1

t
S2
g(t)dt = S#

g (t). This can be achieved by
interpolating Sg(t) with the Bessel function or other functions
with more than 7 parameters to satisfy the first and second
order continuity at the boundary and the above integration
condition. Algorithm 2 presents the process in detail.

Algorithm 2: g(D, t) Construction
Input: The dataset yt ∈ D, t ∈ {0, ..., T};

The dataset y′t ∈ D′, t ∈ {0, ..., T};
Output: The ODE g(D, t), g(D′, t) for t ∈ [0, T ];

1: Fit g(D, t) with g(D, t) = yt+1 − yt for t ∈ {0, ..., T}.
2: Initialize the initial derivative and second-order

derivative S1
g , S

2
g ;

3: Calculate the sensitivity budget
S#
g (t) = |yt+1 − yt − y′t+1 + y′t|, t ∈ {0, ..., T};

4: for t ∈ {1, .., T} do
5: Using Bassel functions Sg(t) to fit [t, t+ 1) with

Sg(t) = S#
g (t); Sg(t+ 1) = S#

g (t+ 1);
S′
g(t) = S1

g ; S′′
g (t) = S2

g ;
∫ t+1

t
S2
g(t)dt = S#

g (t)
6: S1

g = S′
g(t+ 1); S2

g = S′′
g (t+ 1)

7: end for
8: g(D′, t) = g(D, t) + Sg(t)
9: return g(D, t); g(D′, t)

After constructing g(D, t), we next construct the strongly
convex function Vn(xt) following the same construction as
indicated in Section III-B. With g(D, t) and Vn(xt), we can
complete SDE modeling for privacy preservation. Process yt
has the following property:

Corollary 2. Induced by g(D, t) constructed by Algo-
rithm 2 and a λ∗-strong convex Vn, process yt satisfies
(α, αβ

λ∗

∑t−1
j=1 S

#
g (j)) RDP.

Theorem 2 characterizes the privacy preserving property for
each sample point. We can use the composition theorem in

Proposition 3 to further obtain the privacy preserving property
for time series data as follows:

Proposition 3. For time series data (x1, .., xT ), if each xt

achieves (α, ϵt) RDP, then the sequence (x1, .., xT ) achieves
(α,
∑T

t=1 ϵt) RDP.

V. NUMERICAL STUDIES

In this section, we present the numerical studies used to
highlight the effectiveness of the proposed noise injection
method. We evaluate the performance of two classical con-
sumer analysis tasks-NILM and load profiling in correspon-
dence with high and low resolution cases.

A. Simulation Setup for High Resolution Data

We compared the identification accuracy of major NILM
methods based on privacy preserved data using our mecha-
nism, and NILM methods based on privacy preserved data us-
ing the classical noise injection method to evaluate the impact
of our mechanism on NILM. We consider four major NILM
methods: the sparse Viterbi algorithm for super-state HMM
(Sparse-HMM) [52], recurrent neural network (RNN) [53],
combinatorial optimization (CO) [54], and factorial hidden
Markov model (FHMM) [55].

We used the widely adopted Redd dataset [40]. In our
numerical study, we used the data for Building 1 in the
dataset from 2011/04/18 21:22:13 to 2011/05/25 03:56:34 with
a sampling rate of 3 Hz.

For all learning based methods, we divided the dataset for
training (before 2011/04/30) and validation (after 2011/04/30).
For SparseHMM algorithm, we followed the hyperparameters
in the seminal Redd dataset numerical study reported in [52].
Specifically, the number of the maximal super states is set
to 4; the state number choice parameter ϵ is set to 0.00021.
For RNN, we followed the RNN structure reported in [53].
During training, we selected an initial learning rate of 0.01.
The number of training epochs was set to 5 and the batch size
was set to 128. For CO and FHMM, we adopted the classical
settings in NILMTK [56].

B. Simulation Setup for Low Resolution Data

We used load profiling for residential consumers as an appli-
cation example to evaluate the effectiveness of our mechanism
for low resolution data. We adopted k-means clustering to
conduct load profiling and studied how the injected noise
may affect the clustering result. Further, we adopted clustering
stability to measure these impacts. Clustering stability is
defined as the probability that each consumer remains in its
original cluster after privacy preservation [3]. We empirically
calculated such a probability and demonstrated the effective-
ness of our mechanism through comparison with the classical
noise injection methods.

In this numerical study, we used the Pecan Street dataset
[57], containing the load profile data of 1-minute resolution,
collected from 400 users in Austin, Texas, from May 1 to
October 30, 2015. We trimmed the dataset by removing all
the data collected on August 9, 2015 because of missing data.
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Fig. 6: Strong convex function estimation for NILM

We combined the daily load profiles of all users into a single
daily load profile dataset (containing 2,048 valid load profiles
in total) to better characterize the diverse user behaviors.
Further, we aggregated the data to form a dataset of 30- minute
resolution. Following [3], we set the number of clusters to 15,
and we randomly chose 1,000 load profiles to verify cluster
stability.

C. Performance Evaluation for High Resolution Data

We set sensitivity ∆ to 1 and α to 2 as the benchmark for
all privacy preserving mechanisms. Next, we introduce how to
identify the random shock in practice for training purposes. In
the simulation, when xt is more than 3 times or less than 1/3
of xt−1, we consider time t as a shock. Further, it is important
to determine the noise injection time length tp because we
do not need to inject noise during the period when no shock
occurs. This time length can be determined by examining
the reaction times of all appliances. In our simulation, we
set tp to 300 time slots. Furthermore, we set the step size
for SDE discretization δ and proportion β to 0.001 and 0.01,
respectively.

According to Theorem 1, we construct a strongly convex
potential function to achieve privacy preservation.

We constructed the estimation following the routine pre-
sented in Section III-B. First, we normalized the data during
the shock period. Then, we constructed a 4-layer MLP with
three ReLU layers to estimate ∇Vθ(xt) using Algorithm 1.
We constructed a simplified quadratic function corresponding
to Eq. (9). We compare the estimation loss under different
λ∗ requirements and choose the optimal fitting, as shown in
Fig. 6. Here, we use the quadratic form because it is simple
and easy to calculate privacy preservation using a quadratic
function. In addition, the privacy preservation level is directly
reflected in the coefficient of the function.

Remark: The optimal fitting for the simplified quadratic
loss function indeed outperforms the simple MLP. However,
there is still room for improvement. For example, we can
construct a function varying with λ and take the minimum
of two forms (MLP and simplified quadratic function). The
performance will be clearly better.

Based on the constructed ∇Vθ(xt), the results are shown
in Fig. 7. We compared our privacy preserving mechanism
with the classical noise injection mechanism. Further, we
denote our mechanism as H and the classical mechanism as
G. All the four NILM algorithms perform better when the
data are protected by our mechanism. This implies that the
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Fig. 7: Privacy preservation for high resolution data

effectiveness of NILM is less influenced by our mechanism,
compared to that with conventional noise injection methods.
This is true when the required privacy preserving level is not
too high.

Moreover, different NILM methods have considerably di-
verse noise-resistance capabilities. Among the four methods,
SparseHMM and RNN have higher accuracies but their per-
formance drops rapidly with increasing privacy preserving
requirements. This is large because of the utilization of
temporal correlations in these two methods. Noise injection
can cause cascading inference failure when utilizing temporal
correlation. Further, although the performances of CO and
FHMM are not as good as those of the other two methods,
they exhibit higher robustness to both privacy preserving
mechanisms.

The accuracy based on our mechanism decreases sharply
beyond a certain privacy requirement (4 × 10−8), which
means our mechanism can no longer maintain the statistical
structures of time series data when the required level of
privacy preserving is too high. This is mainly attributed to
our mechanism essentially being a biased noise injection
mechanism. That is, it becomes increasingly impossible for
the proposed mechanism to maintain the data around x0 with
an increasing privacy preserving level. In these cases, classical
noise injection methods also significantly affect the accuracy
of the NILM. Therefore, we can conclude that our proposed
mechanism is very useful in most cases in terms of NILM
because it can simultaneously guarantee the effectiveness of
NILM and preserve the privacy of the original dataset. This
is ideal when energy consumers seek advice from (untrusted)
third parties to save energy.

D. Performance Evaluation for Low Resolution Data

We applied the proposed mechanism to the low resolution
data. We followed the analytical framework in [3] and con-
ducted the clustering for the original time series data. As
mentioned in Theorem 5, we need to construct the internal
dynamics ODE and noise SDE. The ODE reflects the pattern
of the given time series data. After clustering, the center of
the cluster reflects the characteristics of the data in its cluster.
Therefore, it was used to model the ODE process. Then for
the consumer data in each cluster, we constructed the noise
generation SDE.

We followed the same process as in the high resolution
cases. We construct a 4-layer MLP with three ReLU layers
to estimate ∇Vθ(xt) based on Algorithm 1. Further, we
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constructed a quadratic function. The results in Fig. 8 indicate
estimation loss with the increasing requirement of λ∗. We
find that the improvement is not very significant because the
performance for MLP is better than the quadratic function in
this case. Therefore, we constructed the quadratic potential
function for computational simplification.

We set the total privacy budget ∆ to 1, and the assignment
constant ϕ to 1. We adopted the same S#

g value at each time
t. The step size δ for the SDE dt discretization and parameter
β were set to 0.001 and 0.009 respectively. We repeated the
experiments for 1,000 times to derive a reliable estimation
of clustering stability. Fig. 9 shows how clustering stability
varies with the privacy level. Particularly, Fig. 9 compares
the proposed mechanism and classical noise injection mecha-
nisms. When the privacy preservation level is less than 0.0015,
the clustering stability based on our mechanism is almost
1. In contrast, the classical mechanism gradually decreases
clustering stability.

In addition, we observed the same phenomenon as in the
high resolution data analysis. Our mechanism causes the
clustering stability to drop sharply when the required privacy
preserving level is beyond 0.0015. This is again attributed to
the bias in our SDE modeling. Nonetheless, even in such cases,
our mechanism outperforms the classical mechanism in terms
of clustering stability.

VI. CONCLUSION

We designed a more effective privacy preserving mecha-
nism. Specifically, we exploited the structure of time series
data in the electricity sector, which consists of two parts: initial
information and pattern information. Further, we identified
that high resolution time series data often only consist of
initial information, and hence its privacy preservation can be
achieved by a time invariant SDE. In contrast, low resolution
time series data often consist of both types of information, and
therefore a time varying SDE is required to protect privacy.
We designed the specific algorithms for both cases, proved

their privacy preserving guarantee and then used a numerical
study to verify our theoretical insights.

Our study can be extended in several ways. For example,
time series data can be modeled as Lévy motion [58], which
focuses on exploiting the non-Gaussian uncertainty in the time
series data. It would be interesting to see if we can customize
the privacy preserving mechanism based on this more general
model. It is also essential to include more prior knowledge
into our SDE modelling. To this end, (deep) probabilistic
models and Bayesian graph frameworks can be employed to
characterize the potential functions more accurately, hence
offering better privacy preservation

APPENDIX

We first introduce the c-Log-Sobolev Inequality (c-LSI),
which will be used frequently in the subsequent proofs.

Definition 6. (c-Log-Sobolev Inequality) For random variable
χ ∈ Rd, it satisfies logarithmic Sobolev inequality with
parameter c, denoted by c-LSI, if for any function f : Rd → R
with continuous ∇f and bounded E(f(χ)2), it holds that

E[f(χ)2 log f(χ)2]−E[f(χ)2] logE[f(χ)2]

≤ 2

c
E[∥∇f(χ)∥]

(18)

A. Proof for Lemma 1

First, we denote the SDE processes induced by the same
V (xt) yet different initial random shocks x0 and x′

0 by xt

and x′
t respectively. The proof relies on the following lemma:

Lemma 3. If the SDE process induced by V (xt) has an initial
λ0 and sensitivity ∆, and x′

t satisfies c-LSI, then xt satisfies
(α, α∆λ0

2 e−2 c
β t) RDP.

Proof for Lemma 3: Consider the same V for two SDE
processes with different initial points as those specified in
Lemma 2 and 3 in [50]. Specifically, if c-LSI is satisfied, it
holds that:

∂R(α, t)

∂t
≤ −2

c

β

[
R(α, t)

α
+ (α− 1)

∂R(α, t)

∂α

]
, (19)

where R(α, t) denotes Rα(pt||p′t), with pt and p′t denoting
pdfs for xt and x′

t.
Next, based on Eq. (19), we know that

R(α, t) ≤ R(α, 0)e−2 c
β t. (20)

By the definition of sensitivity ∆, we have,

R(α, 0) =
∆λ0

2
. (21)

This completes the proof for Lemma 3.
With Lemma 3, the remaining hurdle is proving that our

process satisfies c-LSI. Without loss of generality, we assume
the mean of x′

0 to be 0.
This allows us to directly show c = λ0e

−4βC in our theorem
from Lemma 34 in [49], because the potential function V in
SDE modeling satisfies all conditions in Lemma 34.
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B. Proof for Theorem 1

The key is to study the case when V (x′
t) is λ∗-strongly

convex. Since we require βλ∗ ≥ λ0, then V (x′
t) is λ0

β -strongly
convex. Thus, x′

t satisfies λ0

2 -LSI according to Lemma 7 in
[50]. Furthermore, it must satisfy βλ∗

2 -LSI by definition of
c-LSI. Finally, setting c = βλ∗

2 completes our proof.

C. Proof for Corollary 1

We need to divide the H(x) into k pieces to conduct the
integration. Then for piece [ ikxt,

i+1
k xt), it holds that for any

x ∈ [ ikxt,
i+1
k xt),∣∣∣∣H(x)−H

(
i

k
xt

)∣∣∣∣ ≤ L

∣∣∣∣x− i

k
xt

∣∣∣∣ ≤ L
xt

k
. (22)

Thus, we have∣∣∣∣∣
∫ i+1

k xt

i
kxt

H(x)dx− xt

k
H
(
i

k
xt

)∣∣∣∣∣
≤
∫ i+1

k xt

i
kxt

∣∣∣∣H(x)−H
(
i

k
xt

)∣∣∣∣ dx = L
(xt

k

)2
,

(23)

Therefore we can conclude that the approximation error is
at the order of O(

Lx2
t

k ).

D. Proof for Proposition 2

Assume that the time series data can be represented as
xt = x0 + n(xt, t), where x0 denotes the shock and n(xt, t)
represents the internal random noise. This inspires us to
consider the process rt = x∗

t − x0, where x∗
t represents the

time series with a constructed strongly convex V . Our proof
relies on the following lemma:

Lemma 4. (Theorem 9 in [42]) If we fix the transition
probabilities P (Y |X) in a Markov chain X → Y , then
Rα(PY ||QY ) ≤ Rα(PX ||QX) for any α ∈ [0,∞], where
PY , QY denote two probability measures for Y and PX , QX

denote those for X .

In our problem, we can construct the Markov chain: x0 →
x0
t → x1

t where x0
t = x0 + rt and x1

t = x0
t + n(xt, t).

Further, we denote neighbor shock x′
0, which yields x0′

t and
x1′

t . Subsequently, based on Lemma 4 we show that

Rα(x
1
t ||x1′

t ) ≤ Rα(x
0
t ||x0′

t ). (24)

E. Proof for Lemma 2

First, we denote the SDE processes induced by different
internal states D and D′ and different initial random shocks
x0 and x′

0 by xt and x′
t respectively.

Lemma 5. For α > 1, if the probability density ratio for
xt and x′

t is continuous and bounded, then the following
inequality holds

R(α, t) + α(α− 1)
∂R(α, t)

∂α

≤ αβ

c

(
αβS2

g

2
− ∂Rα(pt||p′t)

∂t

) (25)

if and only if x′
t satisfies c-LSI.

Lemmas can be proved by following the proofs of Lemma
2 and 3 in [50]. Specifically, we can directly replace V (t, xt)
with Vt(θ) and replace V ′(t, xt) with V ′

t (θ) in [50].

Lemma 6. If the SDE process xt has a potential function
V (xt, t), λ0, sensitivity ∆, and neighbor process x′

t satisfies
c-LSI, then xt satisfies (α, α(1−ϕ)2δ2λ0

2 ηI +
αβ2ϕ2∆2

2c (1−ηP ))
RDP, where ηI and ηP reflect the initial and pattern infor-
mation exposure respectively, with the following closed form
characterizations:

ηI = e−2 c
β t,

ηP = e−
c
β (t−1) − e

c
β (1−2t) + e−2 c

β t.

Proof for Lemma 6: According to Lemma 5, if c-LSI is
satisfied, we know that the following PDE holds

∂R(α, t)

∂t

≤ αβS2
g(t)

2
− c

β

[
R(α, t)

α
+ (α− 1)

∂R(α, t)

∂α

] (26)

Solving this PDE with the initial condition yields:

R(α, 0) =
∆λ0

2
, (27)

which completes the proof.
Based on Lemma 6, we need to show that x′

t satisfies c-LSI
by induction to prove Lemma 2.

To this end, we decouple x′
t into two processes, the noise

process in Eq. (14) and the dynamics of Eq. (13). We know
dxt = dyt + dnt and dx′

t = dy′t + dn′
t for the neighbor

process. First, we assume the distribution at time t by p0t .
Then the noise dn′

t changes the distribution, which yields
the distribution p1t . Note that the potential function of dn′

t

is temporally independent.
We assume p0t satisfies c-LSI, and set c to be λ0e

−4βC .
Note that the process for nt is a standard Smoluchowski

dynamics. Lemma 33 in [49] implies with our V ′
n’s form, the

steady distribution for SDE when t → ∞ satisfies c-LSI. Then
using Lemma 34 in [49] and the induction assumption, we
know that p1t also satisfies c-LSI.

Next, we examine dy′t to derive p0t+δ . We know dy′t is a
1-Lipschitz transformation because g(D′, t) is deterministic at
time t. Thus, Lemma 8 in [50] implies that for time t+δ p0t+δ

also satisfies c-LSI.
Finally, we have already guaranteed that our distribution

satisfies c-LSI. Therefore, the whole mathematical induction
holds. By substituting c = λ0e

−4βC in Lemma 6, we complete
the proof.

F. Proof for Theorem 2

The proof follows the same routine as that for Lemma 2.
The only difference is that the parameter c is now βλ∗

2 , instead
of λ0e

−4βC . For more details of the proof, please see Lemma
5, 8 and 9 in [50].
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G. Proof for Corollary 2

First, in this case ϕ = 1 since no information leakage will
occur when t = 0. Then, for period [j, j + 1),

αβ

2

∫ j+1

j

e
λ∗(ξ−t)

2 S2
g(ξ)dξ ≤ αβ

2

∫ j+1

j

S2
g(j)dξ

=
αβ

λ∗ S
#
g (j).

(28)

The inequality holds since eλ
∗(ξ−t) ≤ 1, ∀λ∗ > 0, t > ξ.

H. Hyperparameters and Network Settings

In this section, we state the choice of our hyperparameters
and provide the network structures. The choice of α will
not influence any result of our privacy, it is just provided
for calculation and representation convenience. The choice of
sensitivity ∆ is also because we scale all the data to [0, 1]
by dividing the maximal for calculation convenience and the
sensitivity will not be larger than 1. The SDE discretization
δ and proportion β is chosen from the list [0.001, 0.01, 0.1, 1]
and we choose the ones with the best accuracy/stability and
the highest privacy guarantee. In practice, it can be chosen
by the hyperparameter search with historical data. Then as for
the network structure of our MLP, it has a width of 4,8,4,1
with standard RELU activation functions. At the final layer,
we clamp the output lower than λ∗ to guarantee the strong
convexity.

I. More Comparison with Other Mechanisms

To highlight the efficiency of our proposed mechanism, we
compare it with three state-of-the-art mechanisms, including
the smooth Gaussian mechanism [20], directly injecting noise
at the outputs of data analytic tasks (‘inject at output’ in
short), and differentially privacy generative adversarial net-
work (PPGAN) [59]. We also implement the classical Gaus-
sian mechanism as the basic benchmark. Hence, altogether
we generate five datasets for the data analytic tasks, i.e.,
NILM for high-resolution data (specifically, we implement
the SparseMM method to conduct NILM) and user profiling
for low-resolution data. Specifically, to examine the privacy-
performance trade-off, we compare NILM accuracy and clus-
tering stability with the privacy guarantee on the five kinds
of generated datasets. We also compare the norm of injected
noise to show the energy efficiency for the five mechanisms,
as injected noise is often generated by storage systems. In
addition, we compare the running time for the five mechanisms
to generate the data.

Next, we explain the hyperparameter settings. For the
smooth Gaussian mechanisms, we use the Savitzky–Golay
filter [60] with a window size of 9 and order of 3. For PPGAN,
we choose 100 as the dimension for the noise input to GAN,
which is consistent with other GAN implementations. Specifi-
cally, we adopt 3 layers MLP with leaky ReLUs’ activation for
the generator network in GAN. We choose 4 layers MLP with
leaky ReLUs and dropouts for the discriminator network in
GAN. We employ the Adam optimizer with privacy-preserving
noise injected. The learning rate is set to 0.002, and the batch
size is set to 128.
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Fig. 10: The privacy-performance comparison for different privacy
mechanisms for high resolution data
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Fig. 11: The privacy-performance comparison for different privacy
mechanisms for low resolution data
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Fig. 12: The energy consumption comparison for different privacy
mechanisms for high resolution data
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Fig. 13: The energy consumption comparison for different privacy
mechanisms for low resolution data

Fig. 10 compares the privacy-performance trade-off for
NILM based on high-resolution data. We can conclude that
our proposed mechanism achieves the best performance in
terms of NILM accuracy. The ‘inject at output’ method has
the worst performance because it directly manipulates the final
results. We also observe that the smooth Gaussian indeed
outperforms the classic Gaussian mechanism. The synthetic
data generated by PPGAN fail to catch the original data’s
inherent features, yielding non-favorable performance. Fig. 11
compares the privacy-performance trade-off for user profiling
based on low-resolution data analysis. We observe similar
patterns. Specifically, PPGAN again fails to generate useful
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data. This implies that manipulating the model parameters
may seriously deteriorate the performance of subsequent data
analytic tasks. Our mechanism again achieves the best stability.

Furthermore, we study the noise injection’s norm to show
our proposed mechanism’s energy efficiency. For the case
study based on high-resolution data, Fig. 12 shows that the
noise injected by our mechanism achieves the minimal norm.
The advantage of our mechanism is particularly clear when the
privacy requirement is high. For the case study based on low-
resolution data, Fig. 13 shows that our mechanism achieves
the smallest cost, though the two Gaussian mechanisms also
achieve similar costs. As for the running time comparison,
besides PPGAN, all the other mechanisms perform rather well,
taking less than 1 ms. In contrast, the training process of
PPGAN already costs more than 15s. In summary, compared
with state-of-the-art mechanisms, our proposed mechanism
achieves the best performance in terms of privacy-performance
trade-off, energy consumption, and running time.
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